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Abstract. We present a two-stage stochastic 0-1 modeling and a related algorithmic approach for
Supply Chain Management under uncertainty, whose goal consists of determining the production
topology, plant sizing, product selection, product allocation among plants and vendor selection for
raw materials. The objective is the maximization of the expected benefit given by the product net
profit over the time horizon minus the investment depreciation and operations costs. The main
uncertain parameters are the product net price and demand, the raw material supply cost and the
production cost. The first stage is included by the strategic decisions. The second stage is included
by the tactical decisions. A tight 0-1 model for the deterministic version is presented. A splitting
variable mathematical representation via scenario is presented for the stochastic version of the model.
A two-stage version of a Branch and Fix Coordination (BFC) algorithmic approach is proposed for
stochastic 0-1 program solving, and some computational experience is reported for cases with dozens
of thousands of constraints and continuous variables and hundreds of 0-1 variables.
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1. Introduction

Supply Chain Management (SCM) is concerned with determining supply, produc-
tion and stock levels in raw materials, subassemblies at different levels of the given
Bills of Material (BoM), end products and information exchange through (possibly)
a set of factories, depots and dealer centers of a given production and service
network to meet fluctuating demand requirements, see Escudero et al. (1999b),
MirHassani et al. (1999) and Hahn et al. (2000), among others. Four key aspects
of the problem are identified, namely, supply chain topology, time, uncertainty and
cost. The uncertainty aspect of the problem is due to the stochasticity inherent to
some parameters for dynamic (multiperiod) planning problems; in our case, the
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main uncertain parameters are product demand and price, raw material supply cost
and production cost.

In these circumstances, and following the classical taxonomy of planning/
scheduling problems in strategic, tactical and operational problems proposed by
Anthony (1965), the tactical supply chain planning problem consists of deciding
on the best utilization of the available resources included by vendors, factories,
depots and dealer centers along the time horizon, such that given targets are met
at a minimum cost. The tactical planning problem assumes that the supply chain
topology is given. The subject of the paper is the strategic planning for supply
chains and, so, the problem consists of deciding on the production topology, plant
sizing, product selection, product allocation among plants and vendor selection for
raw materials. The objective is the maximization (in constant terms) of the expected
benefit given by the product net profit over the time horizon minus the investment
depreciation and operation costs.

There are important differences between strategic and tactical planning prob-
lems, see Bitran and Tirupati (1993), among others. Perhaps the most important
difference is the own character of the problems. Tactical planning is devoted to
better utilization of available resources and strategic planning is devoted to better
acquisition of resources so that the tactical planning profit minus the resources de-
preciation cost is maximized subject to given strategic constraints. Two of the most
crucial characteristics of the strategic planning are the potential high stochasticity
of the parameters due to longer time horizon lengths, and the 0-1 character of the
strategic decision variables. Very often there are thousands of constraints and vari-
ables for deterministic situations. Given today Optimization state-of-the-art tools,
deterministic strategic and tactical planning should not present major difficulties
for problem solving. However, it has long being recognized (Beale, 1955; Dantzig,
1955) that traditional deterministic optimization is not suitable for capturing the
truly dynamic behaviour of most real-world applications and, certainly, strategic
supply chain planning is one of them. The main reason is that such applications
involve, as we said above, data uncertainties which arise because information that
will be needed in subsequent decision stages is not available to the decision maker
when the decision must be made.

There is an extensive literature on dynamic production/scheduling planning. See
hierarchical approaches in Graves (1986) and Bitran and Tirupati (1993); single
level based systems in Karmarkar (1989) and van Hoesel et al. (1989); multi-level
based systems in Goyal and Gunasekeran (1990) and Escudero (1994); systems
for line balancing in Pocket and Wolsey (1991); systems with lot size, inventory
holding and setup considerations in Wagner and Within (1958), Shapiro (1993),
Dillenberger et al. (1994), Constantino (1996) and Wolsey (1997); and transporta-
tion and inventory integration systems in Romero Morales (2000), among others.
Billington et al. (1986), Cohen and Lee (1989) and Shapiro (1993), among others
present models for global optimization of multi-level supply chains.
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All the above references present models and algorithmic schemes for determin-
istic environments. So the uncertainty inherent to most of the important parameters
is not dealt with. However, the treatment of the stochasticity is relatively recent
in production planning. See Zipkin (1986), Modiano (1987), Eppen et al. (1989),
Sethi and Zhang (1994), Wagner and Beman (1995), Cheung and Powell (1996),
Baricelli et al. (1996), Mitra et al. (1997), Escudero et al. (1999b), MirHassani et
al. (1999), Albornoz and Contesse (1999), Ahmed et al. (2000a) and Tommasgard
and Høeg (2001), among others, for interesting approaches on production planning
problem solving. Some of the above references are scenario-based approaches
to deal with the uncertainty via the non-anticipativity principle, see Rockafeller
and Wets (1991). It is very amenable for decomposition approaches, see Escudero
(1998), among others.

Moreover, most of the stochastic approaches for supply chain management only
consider tactical decisions (modeled by continuous variables) usually related to
supply, production and market shipment of raw materials and products. There are
very few schemes that we know, see e.g. MirHassani et al. (1999) and Ahmed
et al. (2000a), that address the strategic planning in supply chain problems un-
der uncertainty. One of the potential alternatives in this environment is based on
two-stage scenario mixed 0-1 program schemes. The first stage decisions are the
strategic decisions on the supply chain topology. There is not full information about
the random events in the supply chain at the time when these decisions are being
made. The second stage decisions include the tactical decisions and minor strategic
decisions over the time horizon. These decisions are made after the realization of
the random events is known (i.e., a given scenario occurs). The first stage decisions
are modeled by using 0-1 variables and, in any case, its value is not subordinated to
any scenario, but it must take into account all of them. The second stage decisions
are modeled by using 0-1 variables as well as continuous variables for each given
scenario.

In this paper, a 0-1 model is presented for the deterministic version of the
Strategic Supply Chain (SSCh) planning problem, as well as a splitting variable
0-1 mixed deterministic equivalent model for the two-stage stochastic version of
the problem. However, Stochastic 0-1 Programming is still in its infancy (Johnson
et al., 2000), although it has a broad application field, see Laporte and Louveaux
(1993), Carøe and Schultz (1996), Carøe and Tind (1998), Schultz et al. (1998),
Alonso et al. (2000a,b), Takriti and Birge (2000) and Nürnberg and Römisch (2000),
among others. In one way or another these approaches use some sort of Lagrangian
and Benders Decomposition schemes, see MirHassani et al. (1999), for obtaining
good lower and upper bounds for the Strategic Supply Chain (SSCh) planning
problem. In this paper we also introduce a specialization of a Branch-and-Fix
Coordination (BFC) algorithmic approach for multi-stage stochastic problems
presented in Alonso et al. (2000a) to the two-stage problem under consideration.
The splitting variable representation of the two-stage problem is very amenable for
the proposed BFC approach to deal with the 0-1 character of the integer variables.
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Its main aim is to coordinate the selection of the branching nodes and branching
variables in the scenario subproblems to be jointly optimized. The computational
results are very interesting when applying BFC to the SSCh two-stage stochastic
problem represented by the model that is proposed in this work. In any case the ex-
pected value of the objective function for the tested cases is not worse and actually
better than the related value when the parameters variability is dealt with via the
average scenario.

The rest of the paper is organized as follows. Section 2 presents the supply
chain management problem to solve. Section 3 presents the mixed 0-1 model of
our choice for the deterministic version. Section 4 gives the two-stage stochastic
programming setting to deal with. The section also shows the splitting variable rep-
resentation of the first stage variables; the Deterministic Equivalent Model (DEM)
that results is included by the two-stage scenario-related models coupled with the
first stage splitting variables equating constraints. Section 5 presents the BFC ap-
proach for problem solving. Section 6 reports on the computational results. And,
finally, Section 7 draws some conclusions from the work.

2. Problem Statement

A time horizon is a set of (consecutive and integer) time periods of non necessarily
equal length where the operations planning will be considered. A product is any
item whose production volume, location and scheduling is decided by the Supply
Chain Management (SCM). An end product is the final output of the supply chain
network. A subassembly is a product that is assembled by the supply chain and,
together with other items, is used to produce other products. By the term product
we will refer to both end products and subassemblies. Their own BoM is a concern
of the SCM. Multiple external demand sources for a product (either an end product
or a subassembly) are also allowed. We will name raw material to any storable
item that is required in the products’ BoM, but whose BoM is not a concern of the
SCM, i.e., the supply is only from outside sources. Let us use the term component
to describe any storable item that is required for the production. We may observe
that a subassembly is a component in a given BoM of some other product. So,
subassemblies and raw materials are components. The stock of an item (either a
product or a raw material) is its available volume at the end of a given time period.
Let us assume that the cycle time (i.e., lead time) of any unit product is smaller that
the length of the given periods in the time horizon.

We may notice that the BoM of a product is the structuring of the set of compon-
ents that are required for its manufacturing/assembly. The BoM can be described
as a set of tiers, i.e., a set of levels in the supply chain. A so-called first tier
component in a BoM of a given product is a component that is directly required
for its manufacturing/assembly.

Let us term vendor to any external source for the supplying of raw materials.
A warehouse within the supply chain can be associated to any item. A plant is a
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capacitated physical location where the products are processed. The plants may
have different capacity production levels. The term plant investment will be used
for the amount of a given currency that is needed for expanding a plant from, say,
level k − 1 to level k. We may observe that the expansion to level k = 1 means that
a plant will be open.

Note that single-level production requires that the components of a given BoM
are assembled sequentially along the cycle time of the product. On the contrary,
multilevel production, as it is in supply chain environments, allows the subsets of
components to be assembled independently and, then, the production resources can
be better utilized. See also Escudero et al. (1999b), among others.

Some parameters are deterministic by nature or the optimal solution may not be
very sensitive to their variability. However, the product net profit and demand, as
well as the raw material cost (and, with smaller intensity, the production cost) are
uncertain parameters, mainly, for long time horizons as it is usually the case for
strategic planning. The available information for the uncertain parameters can be
structured in a set of scenarios (i.e., potential realizations of the parameters) (see
Section 4).

The goal of the SSCh planning problem that is addressed in this work consists
of determining the production topology, plant sizing, product selection, product
allocation among plants and vendor selection for raw material. The objective is the
maximization (in constant terms) of the expected benefit given by the product net
profit minus the operation costs and the plant investment depreciation cost over the
time horizon, by considering the set of given scenarios for the uncertain parameters.

Two stages are considered in the problem. The first stage is devoted to the stra-
tegic decisions about plants sizing, product allocation to plants and raw materials
vendor selection. The second stage is devoted to the tactical decisions about the
raw material volume to supply from vendors, product volume to be processed in
plants, stock volume of product/raw material to be stored in plants/warehauses,
component volume to be transported from origin plants/warehouses to destination
plants and product volume to be shipped from plants to market sources at each time
period along the time horizon, given the supply chain topology decided at the first
stage. Obviously the strategic decisions, besides satisfying their related first stage
constraints, will take into consideration the product net profit and operation cost
related to the tactical environment besides the investment depreciation cost.

Let the following definition and notation of the elements for the deteministic
version of the SSCh planning problem.

Sets:

I , set of plants.
J , set of products. (End products and subassemblies)
R, set of raw materials.
C, set of components. (Raw materials and subassemblies)
L, set of subassemblies. (L = J

⋂
C)
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E , set of items. (E = J
⋃

R)
V , set of vendors (or zones) for the raw material supplying.
Cj , set of first tier components required by product j , ∀j ∈ J .
Ij , set of plants that are available to process product j , ∀j ∈ J , (Ij ⊆ I),

and
set of candidate vendors (or zones) for raw material j , ∀j ∈ R, (Ij ⊆
V).

T , set of time periods along the time horizon (i.e., second stage).
Ti , set of time periods where a capacity expansion for plant i is allowed,

∀i ∈ I(Ti ⊆ T ), besides time period t = 0 (i.e., first stage).
Ki , set of capacity expansion levels for plant i, ∀i ∈ I .
Mj , set of market sources for product j , ∀j ∈ J .

Parameters:

Ñ , maximum number of plants that can be open.
N̂ , maximum number of end products that can be processed.
Nj,Nj , conditional minimum and maximum number of plants where product j

can be processed, respectively, if any, ∀j ∈ J , and
conditional minimum and maximum number of vendors for raw material
j , respectively, if any, ∀j ∈ R.

N
i
, maximum number of products to be processed in plant i at any time

period, ∀i ∈ I , and
maximum number of raw materials to be supplied by vendor (or zone)
i, ∀i ∈ V .

Pt , available budget for plant capacity building/expansion at time period
t , for t ∈ {0} ∪ T . Note: By convention, plant building (i.e., capacity
expansion level k = 1) can only occur at time period t = 0.

Xi
j ,X

i

j , conditional minimum and maximum volume of raw material j that can
be supplied from vendor i at any time period, respectively, if any, ∀i ∈
Ij , j ∈ R, and
conditional minimum and maximum volume of product j that can be
processed in plant i at any time period, respectively, if any, ∀i ∈ Ij , j ∈
J .

Si
jt , S

i

j conditional minimum and maximum volume of raw material j that can
be in stock from vendor (or zone) i at the end of time period t and at any
time period, respectively, if any, ∀i ∈ Ij , j ∈ R, t ∈ T and
conditional minimum and maximum volume of product j that can be
in stock in plant i at the end of time period t and at any time period,
respectively, if any, ∀i ∈ Ij , j ∈ J , t ∈ T .

oi
j , unit capacity usage of plant i by product j , ∀i ∈ Ij , j ∈ J .

p
i
, minimum capacity usage of plant i at any time period, if any.
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pk
i , production capacity increment from level k − 1 to level k in plant i,

∀k ∈ Ki , i ∈ I .
ngj , volume of component g required by one unit of product j in its BoM,

∀g ∈ Cj , j ∈ J .
Dm

jt , demand of product j from market source m at time period t , ∀m ∈
Mj , j ∈ J , t ∈ T .

Cost estimations:

ak
it : budget required for the capacity expansion from level k − 1 to level k in

plant i at time period t , ∀k ∈ Ki , t ∈ {0} ∪ Ti , i ∈ I .
qk
it : depreciation cost (along the time horizon) of the investment ak

it related
to the k-th capacity expansion level in plant i at time period t , ∀k ∈
Ki , t ∈ {0} ∪ Ti , i ∈ I .

pim
jt : net unit profit from selling product j from plant i to market source m

at time period t , including local taxes, transport cost and others, ∀i ∈
Ij ,m ∈ Mj , j ∈ J , t ∈ T .

cijt : processing unit cost of product j in plant i at time period t , ∀i ∈ Ij , j ∈
J , t ∈ T , and
supplying unit cost of raw material j from vendor i at time period t ,
∀i ∈ Ij , j ∈ R, t ∈ T .

hi
jt : holding unit cost of product/raw material j in plant/warehouse i at time

period t, ∀i ∈ Ij , j ∈ E, t ∈ T .
b
f i
g : transport unit cost of component g from plant/ warehouse f to plant i at

any time period, ∀g ∈ Cj , j ∈ J , t ∈ T .

The goal consists of determining the production topology (i.e., location of plants
to open), plant sizing, end product selection, product allocation among plants and
vendor selection for raw materials to maximize the total net revenue.

3. Strategic Supply Chain Planning Deterministic Model

This section is devoted to the deterministic version of the SSCh planning model
and, so the goal is to obtain the optimal solution for a problem where all parameters
are known. Several 0-1 equivalent models can be considered, in particular, the so-
called step variables based model and the impulse variables based model. The
basic idea for these two types of variable’s representation is taken from Bertsimas
and Stock (1998) for scheduling air traffic in a network of airports, see also Alonso
et al. (2000b). The step variables model has been selected, since it is tighter that
the other one; the extended version of this paper, see Alonso et al. (2001), presents
the second model and gives the proof of its weakness.

The variables for the first model are as follows.
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Strategic variables. They are 0-1 variables, such that

αj =
{

1, if product/raw material j is selected for processing/supplying

0, otherwise,

∀j ∈ E

βi
j =

{
1, if product/raw material j is processed in plant i/supplied by vendor i

0, otherwise,

∀i ∈ Ij , j ∈ E

γ k
it =

{
1, if plant i has capacity level k at least at period t

0, otherwise,

∀k ∈ Ki , i ∈ I, t ∈ {0} ∪ T

Operation variables. They are continuous variables, such that

Xi
jt : volume of product j to be processed in plant i at time period t , ∀i ∈ Ij , j ∈

J , t ∈ T , and
volume of raw material j to be supplied from vendor i at time period t ,
∀i ∈ Ij , j ∈ R, t ∈ T .

Si
jt : stock volume of product/ raw material j in plant/ warehouse i at (the end of)

time period t , ∀i ∈ Ij , j ∈ E, t ∈ T
E

fji
gt : volume of component g to be transported from plant/warehouse (origin) f to

plant (destination) i at time period t for processing product j , ∀f ∈ Ig, g ∈
Cj , i ∈ Ij , j ∈ J , t ∈ T .

Y im
jt : volume of product j to be shipped from plant i to market source m at time

period t , ∀i ∈ Ij ,m ∈ Mj , j ∈ J , t ∈ T .

Objective: maximize the total net revenue, given by z2 − z1, see below.

STAGE 1 (STRATEGIC) SUBMODEL

z1 = min
∑
i∈I

∑
k∈Ki

qk
i0γ

k
i0 (3.1)

subject to ∑
i∈I

γ 1
i0 � Ñ (3.2)

γ k−1
i0 � γ k

i0 ∀k ∈ Ki \ {1}, i ∈ I (3.3)∑
i∈I

∑
k∈Ki

ak
i0γ

k
i0 � P0 (3.4)
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j∈J \L

αj � N̂ (3.5)

αj � αg ∀g ∈ Cj , j ∈ J (3.6)

Njαj �
∑
i∈Ij

βi
j � Njαj ∀j ∈ E (3.7)

βi
j � γ 1

i0 ∀i ∈ Ij , j ∈ J (3.8)∑
j∈J /i∈Ij

βi
j � N

i
γ 1
i0 ∀i ∈ I (3.9)

∑
j∈R/i∈Ij

βi
j � N

i ∀i ∈ V (3.10)

αj ∈ {0, 1} ∀j ∈ E (3.11)

βi
j ∈ {0, 1} ∀i ∈ Ij , j ∈ E (3.12)

γ k
i0 ∈ {0, 1} ∀k ∈ Ki , i ∈ I (3.13)

Constraints (3.2) ensure that the number of plants in the supply chain will not
exceed the allowed maximum. Constraints (3.3) ensure that the γ -variables are
well defined. Constraints (3.4) take into account the investment budget. Constraints
(3.5) bound the number of end products for processing. Constraints (3.6) force the
production/supplying of the first tier components of any product selected. By con-
sidering the BoM requirements in the operation submodel, see below specifically
constraints (3.24), it is easy to see the redundancy of (3.6). However, this type of
cut reduces the linear programming (LP) solution space and, then, helps to tighten
the model. Constraints (3.7) conditionally lower and upper bound the number of
plants/vendors for each product/raw material. Constraints (3.8) restrict the pro-
cessing of products to those plants that are in operation. Constraints (3.9) and (3.10)
ensure that the number of products/raw materials for processing in plant/supplying
from vendor i will not exceed the allowed maximum.

We may observe that the right-hand-side (rhs) of (3.9) has been reinforced by
multiplying it by γ 1

io. On the other hand, enlarging the model by appending the
variable upper bound βi

j � αj , i ∈ Ij , j ∈ E results in a 0-1 equivalent LP stronger
model as well. However, given the potentially high number of β-variables, the
appending should only be performed for violated cuts by the current LP solution.

STAGE 2 (OPERATION) SUBMODEL

(3.14) subject to (3.15)-(3.27)
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Stage 2 submodel. Time period indexed profit function to maximise

z2 = max
∑
t∈T

∑
j∈J

∑
i∈Ij

∑
m∈Mj

pim
jt Y

im
jt −

∑
t∈T

∑
j∈E

∑
i∈Ij

(cij tX
i
jt + hi

jtS
i
j t ) −

−
∑
t∈T

∑
j∈J

∑
g∈Cj

∑
f∈Ig

∑
i∈Ij

bf i
g E

fji
gt −

∑
i∈I

∑
k∈Ki\{1}

∑
t∈Ti

qk
it (γ

k
it − γ k

i,t−1) (3.14)

Stage 2 submodel. Time period indexed capacity expansion constraints

γ 1
i,t−1 = γ 1

it ∀i ∈ I, t ∈ T (3.15)

γ k
i,t−1 = γ k

it ∀k ∈ Ki \ {1}, t ∈ T \ Ti , i ∈ I (3.16)

γ k
i,t−1 � γ k

it ∀k ∈ Ki \ {1}, t ∈ Ti , i ∈ I (3.17)

γ k−1
it � γ k

it ∀k ∈ Ki \ {1}, i ∈ I, t ∈ T (3.18)∑
i∈I

∑
k∈Ki\{1}

ak
it (γ

k
it − γ k

i,t−1) � Pt ∀t ∈ T (3.19)

p
i
γ 1
i0 �

∑
j∈J /i∈Ij

oi
jX

i
jt �

∑
k∈Ki

pk
i γ

k
it ∀i ∈ I, t ∈ T (3.20)

Stage 2 submodel. Time period indexed operation constraints

Si
j,t−1 + Xi

jt = ρi
jt + σ i

jt + Si
jt ∀i ∈ Ij , j ∈ E, t ∈ T (3.21)

Xi
jβ

i
j � Xi

jt � X
i

jβ
i
j ∀i ∈ Ij , j ∈ E, t ∈ T (3.22)

Si
jtβ

i
j � Si

jt � S
i

jβ
i
j ∀i ∈ Ij , j ∈ E, t ∈ T (3.23)∑

f∈Ig

E
fji
gt = ngjX

i
jt ∀g ∈ Cj , i ∈ Ij , j ∈ J , t ∈ T (3.24)

∑
i∈Ij

Y im
jt � Dm

jt ∀m ∈ Mj , j ∈ J , t ∈ T (3.25)

Y im
jt � 0 ∀i ∈ Ij ,m ∈ Mj , j ∈ J , t ∈ T (3.26)

E
fji
gt � 0 ∀f ∈ Ig, g ∈ Cj , i ∈ Ij , j ∈ J , t ∈ T (3.27)

where

ρi
jt =


∑

$∈J /j∈C$

∑
f∈I$

E
i$f

jt , for j ∈ C

0, for j ∈ J \ L
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and

σ i
jt =


∑

m∈Mj

Y im
jt , for j ∈ J

0, for j ∈ R

The constraints have been divided in two blocks, namely, capacity expansion re-
lated constraints (3.15)–(3.20) and operation related constraints (3.21)–(3.27). Con-
straints (3.15) ensure that the plants are only open at time period t = 0. Constraints
(3.16) ensure that the capacity expansion of the plants will only occur at allowed
time periods. Constraints (3.17) and (3.18) assure that the γ -variables are well
defined. Constraints (3.19) take into account the capacity expansion budget. Con-
straints (3.20) limit the production from each plant to a conditional minimum, as
well as to the maximum capacity given by the expansion plan. Constraints (3.21)
are the typical stock balance equations for products and raw materials. Constraints
(3.22) and (3.23) define the semi-continuous character of the production and stock
variables. These constraints imply the non-negativity of the variables Xi

jt and Si
jt ,∀i ∈ Ij , j ∈ E, t ∈ T . Constraints (3.24) force the BoM requirements for the

products. Constraints (3.25) ensure that the product shipment to the market sources
will not exceed the related demand.

4. Modeling the Strategic Supply Chain Planning under Uncertainty

Let the following representation of the model (3.1)–(3.27)

max ax + by + cz

s.t. A1x = q

A2x + By + Cz = p (4.1)

x, y ∈ {0, 1}, z � 0

where a, b and c are the vectors of the objective function coefficients; x, y and z are
the vectors of the variables, such that x represents the 0-1 first stage variables, in
our case, the strategic α-, β- and γ -variables, y represents the strategic 0-1 second
stage variables, in our case, γt , t ∈ T , and z represents the continuous second stage
variables, in our case, the tactical X-, S-, E- and Y -variables; A1 and A2 are the first
stage and second stage constraint matrices related to the x-variables, respectively,
B and C are the second stage constraint matrices related to the y- and z-variables,
respectively; and q and p are the rhs vectors for the first stage and second stage,
respectively; all parameters with conformable dimensions.

The model must be extended to deal properly with the uncertainty on the product
net profit and demand, and raw material and production costs. We employ the
so-called scenario analysis approach, where the uncertainty on the stochastic para-
meters is modeled via a set of scenarios, say, (. We also introduce the weight, say
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wω, representing the likelihood that the modeler associates with scenario ω, for
ω ∈ (.

One way to deal with the uncertainty is to obtain the solution x, y, z that best
tracks each of the scenarios, while satisfying the constraints for each scenario (or,
for the matter, minimizing their infeasibility). This can be achieved in different
ways, all of them known as Simple Recourse (for short, SR) but, in our case,
SSCh planning, it implies a non-necessary integration of the strategic and tactical
decisions (i.e., in a simple recourse mode the production and market decisions
are to be made in advance to the realization of the scenarios); as a consequence
an increment of cost stock values would happen (see Escudero et al. (1993) and
Section 6).

However, when only first stage decisions (i.e., the strategic decisions, in our
case) are to be made, obviously, by considering all given scenarios but without
subordinating to any of them (an approach so-called full recourse), then the hier-
archical consideration of the decisions does not anticipate the tactical decisions
but subordinates them to the occurrence of the scenarios. In order to introduce the
modeling of this approach, let us use the following notation: yω and zω, the strategic
and tactical decisions to be made under scenario ω (i.e., once the realization of the
scenario occurs), respectively, for ω ∈ (; cω, the objective function coefficients of
the z-variables under scenario ω (where the net unit profit and processing cost for
the products and the supplying unit cost for the raw materials are the uncertain
parameters); and pω, the rhs parameter vector for the second-stage constraints
under scenario ω (where the product demand is the uncertain parameter).

The compact representation of the full recourse two stage stochastic version of
the deterministic model (4.1) can be represented by the Deterministic Equivalent
Model (DEM),

ZIP = max ax +
∑
ω∈(

wω(byω + cωzω)

s.t. A1x = q

A2x + Byω + Czω = pω ∀ω ∈ ( (4.2)

x ∈ {0, 1}, yω ∈ {0, 1}, zω � 0 ∀ω ∈ (

Different types of decomposition approaches can be used for solving model (4.2)
with continuous variables. We favour Lagrangian and Benders Decomposition
schemes. Benders (1962) decomposition methods can be applied to exploit the
structure of the DEM (4.2). The first application to two-stage stochastic LP is due
to van Slyke and Wets (1969). See also in Birge and Louveaux (1997), among
others, some schemes for dealing with the integer version of the model.

On the other hand, we can also consider some other types of mathematical
representations, specifically, the so-called splitting variable representation, since
it is very amenable for our approach to deal with 0-1 variables. Given the large-
scale instances of the model for SSCh planning, decomposition in smaller models
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is a key for success. One type, so-called node-based representation, requires to
produce sibblings of some of the x-variables (in particular, the variables with non-
zero elements in the second stage constraints, in our case, the β- and γ -variables).
Another type so-called scenario-based representation requires sibblings, say xω, of
the full set of x-variables for each scenario ω ∈ ( and adding explicitly the non an-
ticipativity contraints, see Alonso et al. (2000a) and below. Mulvey and Ruzczynski
(1992) and Escudero et al. (1999a), among others present detailed algorithms for
solving the LP relaxation of this type of models, by using an augmented Lagrangian
function. In a different context see in Nürnberg and Römisch (2000) a Lagrangian
based stochastic dynamic programming approach, and see in Ahmed et al. (2000b)
a finite branch-and-cut approach for a two-stage stochastic mixed integer program.

In spite of the good performance of the above approaches for the LP version of
model (4.2), Benders and Lagrangian Decomposition schemes may have a better
performance for smaller instances than the cases discussed below (see Laporte and
Louveaux (1993), Carøe and Tind (1998), and Carøe and Schultz (1996), among
others).

The splitting variable representation via scenario of model (4.2) is as follows

ZIP = max
∑
ω∈(

wω(axω + byω + cωzω)

s.t. A1xω = q ∀ω ∈ (

A2xω + Byω + Czω = pω ∀ω ∈ (

xω − xω+1 = 0 ∀ω = 1, 2, . . . , |(| − 1

xω, yω ∈ {0, 1}, zω � 0 ∀ω ∈ (

(4.3)

This model includes the so-called non-anticipativity constraints (4.4).

xω − xω+1 = 0, ∀ω = 1, 2, . . . , |(| − 1. (4.4)

Carøe and Schultz (1996) use a similar decomposition approach. However,
that approach focuses more on using Lagrangian relaxation to obtain good lower
bounds, and less on branching and variable fixing. See also Takriti and Birge
(2000). The methodology to be presented below focuses on branching and variable
fixing and, in any case, Lagrangean relaxation schemes can be added on top.

Given the structure of the Strategic Supply Chain (SSCh) planning deterministic
model (3.1)–(3.27), the stochastic version as represented in (4.3) consists of the
same deterministic representation but it should be replicated for each scenario from
( plus appending the non-anticipativity constraints for the (first-stage) 0-1 α-, β-,
γ0- variables. The scenario related element of the rhs vector pω for ω ∈ ( is the
demand of the products at each time period. The related elements of the objective
function vector cω are the product market price and production cost and the raw
material supply cost for each scenario ω, for ω ∈ (.

Let us consider the relaxation of condition (4.5), which includes the 0-1 char-
acter of the x- and y-variables in model (4.3) as well as the non-anticipativity
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constraints (4.4),

xω − xω+1 = 0, xω, yω ∈ {0, 1}, ∀ω ∈ (, (4.5)

such that the new problem can be expressed

ZIP = max
∑
ω∈(

wω(axω + byω + cωzω)

s.t. A1xω = q ∀ω ∈ (

A2xω + Byω + Czω = pω ∀ω ∈ (

xω, yω ∈ [0, 1], zω � 0 ∀ω ∈ (

(4.6)

Note that the LP model (4.6) consists of a set of |(| independent models; we can
execute, say, a Branch-and-Fix (BF) procedure for each scenario related model in
order to ensure the integrality condition. Instead of obtaining independently the op-
timal solution for each one, we propose an ad-hoc approach specifically designed to
coordinate the node and variable branching for each scenario-related BF tree, such
that the relaxed constraints (4.4) are satisfied when fixing the appropriate variables
to either one or zero. The proposed approach also coordinates the prunning of the
required scenario-related BF nodes.

5. Algorithmic approach

Let I denote the set of indices of the first stage variables (i.e., the x-variables) such
that xω

i for i ∈ I is an element of vector xω. Let also Gω denote the BF tree
associated with scenario ω, and Hω the set of active nodes in Gω. Any two active
nodes, say, h ∈ Hω and h′ ∈ Hω′

with ω �= ω′ are said twin nodes if the path
from the root node to each of them in their own BF trees, say, Gω and Gω′

has
branched or fixed on the same values of the x-variables. A family of twin nodes,
say T f , is a set of nodes, such that any node is a twin node to all the other nodes in
the familly. Let F denote the set of families of twin nodes, such that it is said that
the nodes h and h′ are twins if h, h′ ∈ T f , f ∈ F . Note that in order to satisfy the
non-anticipativity constraint (4.4) the branching and fixing of the x-variables must
be with the same value k ∈ {0, 1} for the twin nodes (see figure 1).

As an illustration, let us consider the active node h in BF tree Gω and assume
a branching is required on the variable xω

i ; in that case, two new subproblems are
created in the BF trees associated with the scenarios ω′ from set (, such that the
new branches from each node h′ from set T f where h ∈ T f , f ∈ F are as follows:

xω
i = xω′

i = 1 on one descendant node from each node in set T f , and

xω
i = xω′

i = 0 on the other descendant node.

So, the proposal is to execute in a coordinated way |(| BF phases (one per scen-
ario). For this purpose, consider a Master Program, say, MP whose mission is to
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Figure 1. Branch-and-Fix Coordination scheme

make decisions about the selection of the branching node and branching variable
as well as the cut identification and appending to the LP subproblem attached to
the node under consideration for each scenario. The algorithmic framework is as
follows, see also our approach (Alonso et al., 2000a) for the multi-stage case.
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BFC Algorithm

Step 1. Solve the LP problem (4.6), by solving the |(| scenario-related LP mod-
els. Each model will be the root node problem of Gω ∀ω ∈ (. If the
conditions (4.5) are satisfied, then stop; the optimal solution to the original
stochastic 0-1 problem (4.2) has been obtained. Otherwise, go to step 2.

Step 2. The following parameters are saved into MP : The fractional values of the
variables and the solution value (i.e., the optimal objective function value)
of each scenario-related LP model as well as the appropriate information
for fixing any variable to 0 or 1 in the set of families T f of the active
nodes Hω for Gω ∀ω ∈ (, f ∈ F . A decision in MP is made for the
selection of the branching node and the branching variable as well as for
the variables fixing. See below. The decision is made available for the
execution of each scenario-related BF phase.

Step 3. The same branching and fixing variables are to be used at the twin active
nodes, i.e., the active nodes whose paths from the root node in their related
BF trees have already branched or fixed on the same values of the first
stage variables. |(| LP subproblems are optimized at each iteration (one
per twin node).

Step 4. In case that the solution for the LP subproblem that has been optimized in
Step 3 satisfies the relaxed constraints (4.5), a new feasible solution has
been obtained for the original problem (4.2). The incumbent solution can
be updated and the twin nodes can be jointly prunned at the BF trees,
if any. Additionally, the updating of the set Hω of active nodes at Gω

∀ω ∈ ( is also performed. If the set of active nodes in the BF trees is
empty then stop, since the optimality of the incumbent solution has been
proved, if any. Otherwise, go to Step 2 and start a new iteration.

We may notice that the above sequence must be executed even if all x- and y-
variables get 0-1 values, but any of the constraints (4.4) is not satisfied.

Fixing variables and prunning nodes

To present the main ingredients of our proposal to solve the stochastic 0-1 mixed
problem (4.3) let us consider the model for scenario ω ∈ (,

max axω + byω + cωzω

s.t. A1xω = q

A2xω + Byω + Czω = pω (5.1)

xω, yω ∈ {0, 1}, zω � 0.

Let also the following concepts and notation.

Z
ω,h
LP , solution value of the LP relaxation of the problem (5.1) attached to the

active node h in the BF tree Gω, for h ∈ Hω, ω ∈ (.
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J ⊆ I , set of x-variables whose related constraint (4.5) is not satisfied (i.e.,
either they have fractional values or the non-anticipativity constraints
are violated) at a given node of a BF tree. Note that the variables from
I \ J have already the same value k ∈ {0, 1} in all twin nodes h for
h ∈ T f , f ∈ F .

N ω,h,k′
ik , set of x- and y-variables whose value must be fixed to k′ in any feasible

solution to the problem (5.1) attached to the active node h from the set
Hω in the BF tree Gω for ω ∈ (, if xω

i is fixed to k, for k, k′ ∈ {0, 1}.
It can be obtained by using probing, see Guignard and Spielberg (1981)
and conflict graph analysis, see Savelbergh (1994) and Atamtürk et al.
(2000), among others. Note that these two types of schemes do only
work on single problems (5.1).

MT f ,k′
ik , set of x- and y-variables that include the N -related sets of variable fix-

ings for the twin nodes from set T f , f ∈ F and the related k-fixing in
the problem (5.1) attached to the nodes. Note. The two-way cascade of
fixing iterations that is required to generate the set should not be over
until no more fixing implications are detected, in order to satisfy the
constraints (4.5).

3
ω,h,k
LPj

, lower bound of the solution value Z
ω,h
LP deterioration if the variable xω

j is
fixed to k, for k ∈ {0, 1}, j ∈ J , h ∈ Hω, ω ∈ (. We present elsewhere,
see Alonso et al. (2000a), two procedures for obtaining the lower bound
by using sensitivity analysis and taking advantage of the N -related set
of variable fixings.

ZIP , objective function value of the incumbent solution.

PROPOSITION 1. If the branching variable to select in active node, say, h from
set Hω at the BF tree Gω, ω ∈ ( is the variable xω

i , i ∈ J , then an upper

bound, say, Z
T f

IPik
, of the solution value of the enlarged problem for xω

i = k, where
k ∈ {0, 1} and f ∈ F so that h ∈ T f , can be expressed

Z
T f

IPik
=

∑
ω′∈(

wω(Z
ω′,h′
LP − 3

ω′,h′,k
LPi

) (5.2)

where h′ ∈ T f for h′ ∈ Hω′
, ω′ ∈ (.

Proof. Problem (4.6) consists of |(| independent LP subproblems (5.1). A lower
bound of the solution value deterioration due to fixing xω

i = k, i ∈ J in active node
h is 3

ω,h,k
LPi

. The related lower bound for the solution value deterioration due to the
satisfaction of the constraints (4.5) in the subproblem (5.1) attached to the node h′

from the same family of twin nodes T f , f ∈ F is 3
ω′,h′,k
LPi

, ω′ ∈ ( − {ω}. �
COROLLARY 1. Consider a family of twin nodes, say, T f , f ∈ F . Then,
1. The set MT f ,k′

ik
of variables fixings to k′ ∈ {0, 1} in the nodes from the set

T f , f ∈ F implied by the potential fixing xω
i = k, i ∈ J can be considered
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permanent at the given set T f of branching nodes if the following condition
holds for k = 1 − k ∈ {0, 1}.

Z
T f

IPik
� ZIP (5.3)

2. The whole set of twin nodes T f , f ∈ F can be prunned if the following
condition holds.

max
k∈{0,1}

{ZT f

IPik
} � ZIP . (5.4)

BRANCHING CRITERIA

Let us consider the set F of families of twin nodes. Notice that each active node
must belong to a family, at least, provided that the x-variables do not satisfy yet
the constraints (4.5) and, so, |T f | � 1, ∀f ∈ F . On the other hand, the branching
must be performed jointly for all members of a given family, if any.

Given a branching family of twin nodes and a branching first-stage variable,
the branching must be performed on the same value for all node members of the
family. The branching should be replicated in cascade for all twin nodes where the
same non-anticipativity constraint must be satisfied. As an illustration, the nodes
1 and 9 in Figure 1, case (b) should branch on the same value for the variables x1

3
and x2

3 , respectively, given that both nodes belong to the same family of twin nodes.
Moreover, since also the nodes 3 and 9 belong to a twin node family, it results that
the nodes 1 and 3 should branch on the same value for the variable x1

3 . Similarly,
a common branching should be performed for the nodes in the sets {5, 7, 11} and
{2, 4, 10}.

See in Linderoth and Savelsbergh (1999) a performance comparison for single
trees’ branch-and-cut strategies. Among the different criteria to select the next node
family to branch and the related branching variable, we use the following criteria:

FAMILY SELECTION CRITERION: DEPTH FIRST STRATEGY

The branching family, say, fk′ , is the set of twin nodes with the smallest lower
bound deterioration of the solution value among the two families, say, f0, f1 ∈ F ,
that have just been created by fixing the last selected variable, say, xω

i to 0 or 1,
respectively, such that

k′ = argmink∈{0,1}

 ∑
ω:h∈Hω :h∈T f

wω3
ω,h,k
LPi

 . (5.5)

where f ≡ fk.
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BRANCHING VARIABLE SELECTION CRITERION: MOST DETERIORATION

STRATEGY

The branching x-variable must be the same for all nodes from the selected set, say,
T f , f ∈ F , in order to satisfy the non-anticipativity constraint (4.4). The variable
xω
i to branch on ∀h ∈ T f , ω : h ∈ Hω, is such that

i = argmaxj∈J
{

min
k∈{0,1}

{
∑

ω:h∈Hω :h∈T f

wω3
ω,h,k
LPj

}
}
. (5.6)

Note 1. In case of a tie in (5.6), the branching order of the variables for the SSCh
planning model is as follows: α-, γ 1

0 -, β- and γ k
0 - variables for k = 2, 3, ...

Note 2. We also use the above branching criteria for the y-variables in the problem
(5.1) attached to the active nodes. See that this type of variables does not generate
any family of twin nodes, by construction. In any case, the second stage variables
have lower branching priority.

6. Computational Results

We report the computational experience obtained while optimizing the stochastic
SSCh planning model for a set of instances by using the BFC approach. The in-
stances have the following dimensions: |I| = 6 plants/warehouses, |Ki | = 3
capacity levels per plant, |J | = 12 products, where |J ⋂

C| = 8 are subassem-
blies, |R| = 12 raw materials, |V| = 24 vendors, |Mj | = 2 markets per product,
|T | = 10 time periods and |(| = 23 scenarios. There is a variety of plants in the
sense that some plants can only assemble given end products, others are dedicated
to one product, some are flexible manufacturing plants and, finally, some others are
specialized on the manufacturing of given subassemblies. The decisions about ca-
pacity expansion have been restricted to intermediate periods besides the decisions
that can be made in the first stage.

To build the scenario tree, different levels of demand (high and low demand
levels) and different levels of prices for raw materials have been combined. There
are two schemes, namely, five demand levels and five price levels, and nine demand
levels and three price levels. In both schemes the extreme cases (low demand and
prices, and high demand and prices) have been eliminated. It seems that for a long
term planning, 23 scenarios could be a good approach (notice that Tomargard and
Høeg (2001) report experience with only 10 scenarios).

Our BFC algorithmic approach has been implemented in a FORTRAN exper-
imental code. It uses the optimization engine IBM OSL v2.1 for solving the LP
problems at the active nodes in the BF trees. The computational experiments were
conducted on a 800 MHz Pentium III Processor with 512 Mb of RAM.

Table 1 gives the dimensions of the scenario-related deterministic model (4.1).
It also gives the dimensions of the deterministic equivalent model to the two-stage
stochastic version, compact representation (4.2). The headings are as follows: m,
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Table 1. Test cases dimensions

Case Deterministic model Stochastic compact representation

m nc n01 dens(%) m nc n01 dens(%)

c1 3388 2937 107 0.103 76318 65989 899 0.005

c2 3458 3068 108 0.100 77928 68980 900 0.004

c3 3145 2663 103 0.112 70795 59775 895 0.005

c4 3405 3065 105 0.099 76775 68977 897 0.004

c5 3933 3654 114 0.086 88743 82326 906 0.004

c6 3145 2663 103 0.112 70795 59775 895 0.005

c7 3081 2543 103 0.116 69411 57015 895 0.005

c8 3894 3634 114 0.087 87824 81866 906 0.004

c9 3388 2937 107 0.103 76318 65989 899 0.005

c10 3101 2533 103 0.114 69871 56785 895 0.005

Table 2. Stochastic Solution

Case ZLP ZIP GAP nn TLP TIP T

c1 238471.13 178366.79 25.20 654 1213.53 1800.00 3013.53

c2 64128.62 0.00(*) 100.00 7 337.03 62.78 399.81

c3 286773.63 224564.20 21.69 2286 548.82 1800.00 2348.82

c4 255419.80 197487.36 22.68 2201 535.76 1800.00 2335.76

c5 53297.06 0.00(*) 100.00 17 825.53 443.85 1269.38

c6 285728.66 226578.02 20.70 2224 585.88 1800.00 2385.88

c7 180256.99 144181.28(*) 20.01 641 293.02 771.26 1064.28

c8 140115.70 89607.39 36.05 269 2104.70 1800.00 3904.70

c9 237866.97 174250.56 26.74 208 1286.03 1800.00 3086.03

c10 173404.62 139738.36(*) 19.41 877 274.15 1439.70 1713.85

∗Optimality has been proved.

number of constraints; nc, number of continuous variables; n01, number of 0-1
variables; and dens, constraint matrix density.

Table 2 shows the main results of our computational experimentation for solving
the SSCh planning problem by using the scenario-based splitting variable repres-
entation (4.3). The headings are as follows: ZLP , solution value of the LP relaxation
(4.6); ZIP , value of the incumbent solution for problem (4.3); GAP , optimality
gap (%) defined as (ZLP − ZIP )/ZLP × 100; nn, number of branching nodes for
the whole set of |(| = 23 BF trees; TLP and TIP , the elapsed time (secs.) to obtain
the LP solution and the additional time to obtain the integer solution, respectively;
T , total time.
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Table 3. The value of the stochastic solution (1)

Case V SS EEV ZIP WS EV

c1 3253.00 175113.79 178366.79 202582.05 208670.34

c2 12220.54 -12220.54 0.00 19447.83 13812.86

c3 1903.97 222660.23 224564.20 251195.44 259863.19

c4 1787.75 195699.61 197487.36 217078.93 218827.75

c5 0.00 0.00 0.00 6525.56 0.00

c6 8655.94 217922.07 226578.02 249449.34 271117.43

c7 7006.66 137174.62 144181.28 157942.74 169135.22

c8 0.00 89607.39 89607.39 107655.30 103102.67

c9 5727.55 168523.01 174250.56 201494.28 219875.02

c10 0.00 139738.36 139738.36 145404.96 157558.52

Given the relaxation of the constraints (4.5), i.e., the non-anticipativity con-
straints and the 0-1 character of the variables, it is not a surprise that GAP is very
big. This fact together with the extremely high dimensions of the problem makes
unrealistic to pretend to prove solution optimality. However see below a smaller
optimality gap. In six out of 10 cases the 30-min. time limit for branching activity
was reached. Moreover, Table 3 shows some parameters for analysing the goodness
of the stochastic approach (see, e.g., Birge and Louveaux (1997) for more details).
The headings are as follows: WS (Wait-and-See) can be expressed as

WS =
∑
ω∈(

wωZω
IP ,

where Zω
IP is the solution value for scenario ω; EV is the solution value for the

average scenario (i.e., the expected value); EEV is the expected result of the
expected value that can be expressed as

EEV =
∑
ω∈(

wωZω,

where Zω is the solution value for the scenario ω related deterministic model,
where the solution for the first stage has been fixed to the optimal solution for
the average scenario deterministic model; and V SS is the value of the stochastic
solution that can be expressed as

V SS = ZIP − EEV.

Note that EEV and WS are lower and upper bounds of the solution value ZIP ,
respectively. See that V SS is positive in seven out of 10 cases, i.e., it always pays
the effort to use the stochastic approach instead of obtaining the strategic decisions
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Table 4. Wait-and-See solution

Case ZWS
LP ZWS

IP GAP nn TWS
LP TWS

IP T WS

c1 238471.13 202582.05 15.05 2973 93.77 1818.96 1912.73

c2 64128.62 19447.83 69.67 461 46.91 93.65 140.56

c3 286773.63 251195.44 12.41 2357 40.87 905.11 945.98

c4 255419.80 217078.93 15.01 4203 46.98 1353.18 1400.16

c5 53297.06 6525.56 87.76 1589 186.29 1463.73 1650.02

c6 285728.66 249449.34 12.70 2386 37.67 886.17 923.84

c7 180256.99 157942.74 12.38 2277 23.55 405.53 429.08

c8 140115.70 107655.30 23.17 5296 215.94 4977.65 5193.59

c9 237866.97 201494.28 15.29 3175 102.17 1682.08 1784.25

c10 173404.62 145404.96 16.15 3483 22.71 989.46 1012.17

Table 5. Expected Result of the Expected Value Solution

Case ZEEV
LP

ZEEV
IP

GAP nn T EV T EEV
LP

T EEV
IP

T EEV

c1 189814.19 175113.79 7.74 73 + 43 71.89 7.07 6.23 85.19

c2 -170.94 -12220.54 7049.01 38 + 30 9.72 4.83 5.00 19.55

c3 238961.76 222660.23 6.82 57 + 55 24.77 5.57 6.34 36.68

c4 197055.68 195699.61 0.69 183 + 0 74.54 3.62 1.44 79.60

c5 0.00 0.00 0.00 29 + 0 38.83 2.69 1.27 42.79

c6 237053.87 217922.07 8.07 178 + 53 75.36 4.05 5.95 85.36

c7 142780.49 137174.62 3.93 85 + 9 17.63 2.57 1.72 21.92

c8 90872.73 89607.39 1.39 444 + 64 378.60 13.49 11.72 403.81

c9 179903.69 168523.01 6.33 147 + 75 100.18 5.41 9.09 114.68

c10 156168.81 139738.36 10.52 109 + 164 35.26 4.17 17.96 57.39

based on the average scenario parameters. For example, observe that the stochastic
solution does not recommend to start business for case 2 (by analyzing the uncer-
tainty of the parameters given by the set of scenarios), but the average scenario
solution does it. As a consequence there is an EEV expected loss derived from the
wrong decision based on the average scenario.

Tables 4 and 5 give the computational results of the experimentation for ob-
taining the WS, EV and EEV parameters. Some headings have the same meaning
as in Table 2. Note: The headings in Table 4 give the total value for the set of
|(| = 23 scenarios. On the other hand, see that ZWS

LP = ZLP , ZWS
IP = WS, and

ZEEV
IP = EEV .
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Table 6. The value of the stochastic solution (2)

Case SR EEV ZIP WS EV

c1 -47.47 -1.82 178366.79 13.58 16.99

c2 0.00 – 0.00 – –

c3 -45.15 -0.85 224564.20 11.86 15.72

c4 -46.36 -0.91 197487.36 9.92 10.81

c5 0.00 0.00 0.00 – 0.00

c6 -59.99 -3.82 226578.02 10.09 19.66

c7 -100.00 -4.86 144181.28 9.54 17.31

c8 -66.52 0.00 89607.39 20.14 15.06

c9 -92.04 -3.29 174250.56 15.63 26.18

c10 -62.10 0.00 139738.36 4.06 12.75

Comparing the column nn in Tables 2 and 4 we can realize that the effort
for obtaining the optimal solution independently for the scenarios requires more
branching nodes and, usually, smaller time than obtaining the stochastic solution.
In any case the GAP for WS is also very big. The optimality of WS has been
proved for all cases.

Table 5 reports on the computational effort for obtaining the expected solution
value for the stochastic problem based on the average scenario. The two values for
each entrance in column nn give the number of branching nodes for obtaining EV

and EEV , respectively. The time for obtaining both parameters and the total time
is also reported. We can observe that the computational time is very small.

Table 6 shows the deviation (in percentage) of the WS, EV and EEV with
respect to the stochastic solution ZIP . It is also reported the deviation of SR (Simple
Recourse) with respect to ZIP , see section 4. Since the SR solution anticipates
both the strategic and tactical decisions for the whole time horizon, the solution
value is more costly than ZIP . However, both approaches coincide on the same
recommendation to cancel the project in cases c2 and c5.

Table 7 shows some relevant statistics. For each case and solution type it gives
the solution value and weight for the best and worst scenarios. Note: In case of
more than one scenario with the same profit (e.g., zero profit), the heading weight
gives the total weight of the scenarios in which that profit is attained. It also shows
the probability P− that a scenario can occur with negative profit; for example, there
is a probability of 0.51 that a scenario with losses can occur for the strategy based
on the average scenario in case c2. Finally, ϕ = σ/µ gives the variation coefficient
as a ratio of the standard deviation σ and the expected value µ. (Note: ϕ = 0 for
σ = µ = 0, since there is no variation.) A conclusion that can be drawn from the
table and above is that, although in most of the cases the expected values RP and
EEV do not differ too much, the stochastic solution is more robust. See that the
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Table 7. Statistics

Case Best scenario Worst scenario P− ϕ

Value Weight Value Weight

c1 WS 334703.27 0.04 74007.78 0.03 – 0.35

RP 296564.41 0.04 56007.97 0.03 – 0.36

EEV 281475.87 0.04 8127.54 0.03 – 0.44

c2 WS 75064.91 0.04 0.00 0.51 – 1.29

RP 0.00 1.00 0.00 1.00 – 0.00

EEV 75064.91 0.04 -154334.66 0.04 0.51 5.18

c3 WS 395080.74 0.04 103283.07 0.03 – 0.32

RP 353390.73 0.04 85283.24 0.03 – 0.33

EEV 339941.73 0.04 38893.85 0.03 – 0.38

c4 WS 357502.10 0.04 86502.07 0.03 – 0.34

RP 318943.45 0.04 67939.53 0.03 – 0.35

EEV 337643.64 0.04 -3141.92 0.03 0.03 0.46

c5 WS 42069.48 0.04 0.00 0.69 – 1.81

RP 0.00 1.00 0.00 1.00 – 0.00

EEV 0.00 1.00 0.00 1.00 – 0.00

c6 WS 407105.91 0.04 90036.00 0.04 – 0.37

RP 366613.34 0.04 90036.00 0.04 – 0.36

EEV 407105.91 0.04 -10600.16 0.04 0.04 0.58

c7 WS 295560.60 0.02 0.00 0.02 – 0.48

RP 247111.23 0.02 -41758.86 0.02 0.03 0.48

EEV 291080.47 0.02 -71683.92 0.02 0.09 0.69

c8 WS 218630.99 0.04 14793.19 0.03 – 0.53

RP 176772.50 0.04 -36508.63 0.03 0.07 0.61

EEV 176772.50 0.04 -36508.63 0.03 0.07 0.61

c9 WS 361098.46 0.02 13636.49 0.02 – 0.43

RP 319388.36 0.02 13636.49 0.02 – 0.48

EEV 361098.46 0.02 -97836.53 0.02 0.13 0.72

c10 WS 232767.10 0.04 34996.23 0.03 – 0.36

RP 232767.10 0.04 16650.09 0.03 – 0.42

EEV 232767.10 0.04 16650.09 0.03 – 0.42
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probability P− is smaller, if any, the variation coefficient is smaller, and, although
the solution value for the best scenario is also smaller, it is greater for the worst
scenario.

7. Conclusions

In this paper we have presented a modeling framework for Strategic Supply Chain
(SSCh) planning under uncertainty in the main parameters. The approach splits
the problem in two stages. The decisions to be made in the first stage are the
strategic decisions related to the chain topology, product and vendor selection,
and plant location, sizing and assignment; the subproblem is modeled by a pure
0-1 program. The second stage decisions are related to the tactical decisions for a
better utilization of the supply chain along a time horizon with uncertainty in the
product demand and price, and production and raw material costs; the subproblem
is modeled by a mixed 0-1 program for each given scenario. Both models are
coupled by some of the first stage variables. The proposed framework allows to
accommodate a great variety of strategic and tactical problems. A mathematical
representation has been selected, so called step variables based model, for the de-
terministic version. In any case, the related Deterministic Equivalent Model (DEM)
for the stochastic version that results is extremely large with dozens of thousands of
constraints and continuous variables and hundreds of 0-1 variables. The modeling
framework allows to decompose the DEM in different ways. An splitting variable
representation by scenario is used, such that the problem is converted in a set of
scenario related mixed 0-1 programs with non-anticipativity constraints for the
first stage variables. A two-stage specialization of a Branch-and-Fix Coordination
(BFC) approach that we describe elsewhere is introduced to coordinate the BF

phase execution for each scenario based model, such that the non-anticipativity
constraints are also satisfied. For this purpose the concept of families of twin nodes
among the different branching trees is used. Computational results for very large
instances are reported. Given the problem dimensions is unrealistic to pretend to
prove the solution’s optimality in affordable time. Although more computational
testing is required, the new approach for SSCh planning problem solving seems
very promising. We have compared the proposed approach via scenario analysis
for obtaining the full recourse stochastic solution with the more traditional ap-
proach based on the average scenario mixed 0-1 program solving. Although we
have obtained the optimal solution for the second type of problems in all instances,
the stochastic solution never has worse expected performance (i.e., net profit) and
it is always more robust (i.e., the variation coefficient is smaller) than the average
scenario based solution. On the other hand both solutions are always much better
that the simple recourse stochastic solution.
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